Automotive Software & Cybersecurity | EE Times

A key challenge in the modern automobile is dealing with the increasing software. Today, there are more lines of code in the connected car than other highly sophisticated machines, including the U.S. Air Force F-35 Joint Strike Fighter, Boeing 787 Dreamliner, or the U.S. Space Shuttle.

The automotive industry is driven by a group of megatrends: automation, connectivity, electrification, and sharing, commonly referred to as ACES. ACES represents a new opportunity for the automotive industry to meet an entirely new set of challenges, but together they point to increasing software complexity.

Hardware today is more powerful and, as a result, millions of lines of code can be executed through a multitude of systems to perform complex functions inside the connected car. Soon these vehicles will communicate externally by way of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Safety and security are paramount concerns, so all onboard systems must be secure while the vehicle is in motion — or sitting idle.

Cybersecurity threats are ever-increasing
The “2020 Automotive Cybersecurity Report” (figure 1) from Upstream Security depicts a six-fold increase over a nine-year time period with numbers doubling from 2018 to 2019. The graph depicts a 94% year-over-year growth in cyberattacks since 2016. New business models will have to evolve as complexity, reliability, risk, and liability become primary drivers. 

Figure 1. Over the past several years, remote automotive cybersecurity incidents have increased dramatically. As more connected vehicles enter the market, the potential for attacks rises exponentially. (Image source: Upstream Security)

The increased effectiveness and proliferation of automotive cyberattacks have created a new urgency for security solutions, driving new regulations by lawmakers to prevent cyberattacks globally. The U.S. Security and Privacy in Your Car Act, or the “Spy Car Act of 2017,” defines requirements for protection against unauthorized data access and reporting. The bill directs the National Highway Traffic Safety Administration (NHTSA) to issue vehicle cybersecurity guidelines that require motor vehicles manufactured for sale in the United States to build in protection against unauthorized access to electronic controls and driving data.

Also in 2017, the U.S. House of Representatives passed H.R. 33886, “The SELF DRIVE Act,” a first-of-its kind legislation to ensure the safe and innovative development, testing, and deployment of self-driving automobiles. China established an automotive cybersecurity committee to ensure the safe operation of intelligent, connected and electric cars, including research, standards, policies, laws, and regulations. Other data regulations are beginning to emerge, such as the EU’s GDPR, Canada’s Digital Privacy Law (PIPEDA), and the European Parliament Transport Committee’s call for EU regulation on access to car data.

NHTSA’s Automotive Cybersecurity Research Program takes a threat analysis approach to cybersecurity, placing threats into six different categories:

  • Spoofing — where a person, program, or device conceals itself as something it is not by manipulating data to gain an illegitimate advantage. 
  • Tampering — intentional data alteration to harm the consumer. For connected cars, this includes modifications to configuration data, software or hardware used in vehicle control systems.
  • Non-repudiation — where a statement’s author cannot successfully dispute validity or authorship.
  • Info disclosure — refers to many types of sabotage related to data leakage. 
  • Denial of service (DoS) — refers to a cyberattack where a machine is flooded with excessive requests from an attacker forcing it to become unavailable for legitimate users by overloading its systems and preventing legitimate requests from being fulfilled. 
  • Elevation of privilege — where an attacker can abuse a machine and perform unauthorized activities by gaining illegitimate access to systems resources and data, causing more damaging attacks. 

Connected car attack surfaces
By understanding these threats, OEMs can look at four potential attack surfaces of the connected car: 

  • The first attack surface is direct physical, including access to the on-board diagnostics (OBD) port, charging port, or harness connectors. A car becomes vulnerable when a hacker has direct physical access, such as at the dealer or repair shop for maintenance or repairs, or when a second party has gained access to the vehicle, such as a parking valet who could execute a direct physical attack. 
  • The second attack surface is indirect physical. Here, a carrier is needed to execute the attack, such as a USB stick or CD that compromises the car’s firmware, or SD cards and firmware updates which open up all kinds of attack possibilities. 
  • The third possibility for attack is through wireless. Bluetooth and the mobile network are prone for wireless attacks and increased automotive systems connectivity has dramatically increased the potential for attack. 
  • The final attack surface is sensor fooling. Researchers have shown that these types of attacks are possible in a laboratory setting. Connected and autonomous cars often use light detection and ranging (LiDAR) sensor technology, causing systems to be blinded or fooled with false information to harm the vehicle operator and occupants. GPS is another technology with vulnerabilities that could be exploited.

Mapping attack surfaces to a vehicle’s architecture (Figure 2) depicts attack surfaces corresponding to a vehicle’s architecture. This basic schematic highlights connectivity within the car, including the use of automotive gateways and multiple vehicle buses, and different types of domains: infotainment, active safety (containing cameras and radar), and body. Chassis and powertrain ECUs utilize a controller area network (CAN) bus that can be easily exploited. Also shown are a variety of buses to communicate data within the central gateway. The central gateway ECU is a focal point of attack because of its direct exposure to the outside world. 

Figure 2. Attack surfaces and corresponding functional units. (Image source: University of California, San Diego, “Comprehensive Experimental Analyses of Automotive Attack Surfaces.”)

It is quite clear that modern connected cars have multiple entry points, which hackers view as both a challenge and opportunity. To prevent any type of cyberattack, all entry points must maintain an appropriate level of security. 

Security can be broken down into three aspects. The first aspect includes authentication and access control. Authentication means who is allowed to do things inside a vehicle. Access control is what the individual or system is allowed to do once inside. The second aspect to security is protection against illegitimate access, data leakages, or harmful software or Trojans from being installed. The final aspect to defining security is to detect and report security incidents. 

Next Post

High Copper Prices Are Terrible for EV Makers. One Company Has an Answer.

Wed Jun 9 , 2021
Text size A worker performs an inventory check on new copper cathode sheets before they are moved Andrey Rudakov/Bloomberg Copper prices and demand are taking off, partly because more people want electric cars. That is a problem for the companies that want to capture that buying interest. The higher prices […]